Mercury-free floating switches and immersion probes

Controlling devices with potential-free microswitch, for automatic control, regulation and signalling of liquid levels

Jola Spezialschalter GmbH \& Co. KG Klostergartenstr. 11•67466 Lambrecht (Germany) Tel. +49 6325 188-01 • Fax +49 63256396 contact@jola-info.de • www.jola-info.de

The units described in this documentation may only be installed, connected and started up by suitably qualified personnel!

Subject to deviations from the diagrams and technical data.

> The details in this brochure are product specification descriptions and do not constitute assured properties in the legal sense.

Contents

Floating switches:

Types	Housing material	Dimensions approx.	Special features	Pages
SSP...	PP	$\varnothing 29 \times 133 \mathrm{~mm}$	---	$\begin{aligned} & 1-1-3,1-1-4 \\ & \text { and } 1-1-13 \end{aligned}$
SPH...	PP	$\varnothing 86 \mathrm{~mm}$	---	$\begin{aligned} & 1-1-5,1-1-6 \\ & \text { and } 1-1-13 \end{aligned}$
SSX...	PP	$\varnothing 98 \times 165 \mathrm{~mm}$	optionally with internal fixing weight	$\begin{aligned} & 1-1-7,1-1-8 \\ & \text { and } 1-1-14 \end{aligned}$
FS...	PP	$46 \times 74 \times 110 \mathrm{~mm}$	with internal fixing weight	$\begin{gathered} 1-1-9,1-1-10 \\ \text { and } 1-1-14 \end{gathered}$
SSR...	$\begin{gathered} \text { stainless steel } \\ 316 \mathrm{Ti} \end{gathered}$	$\varnothing 147 \times 445$ mm	with protective bellows made of stainless steel	$\begin{gathered} 1-1-11,1-1-12 \\ \text { and } 1-1-14 \end{gathered}$
SS/PTFE 55/A ./K	PTFE	$\varnothing 55 \times 145 \mathrm{~mm}$	---	$\begin{gathered} 1-1-15 \\ \text { and } 1-1-16 \end{gathered}$
SS/PTFE 55/./K	PTFE	$\varnothing 55 \times 230 \mathrm{~mm}$	with protective bellows made of PTFE	$\begin{gathered} 1-1-17 \\ \text { and } 1-1-18 \end{gathered}$

> Further mounting accessories

1-1-19
TSV/... level monitors with mounted floating switch SSP...
TS/O/... immersion probes with mounted floating switches SSP...
TS/... immersion probes with mounted floating switches
SSX..., SSR... or SS/PTFE 55/./K1-1-23
Questionnaire for enquiries and orders 1-1-25
Options for safety applications 1-1-27

These floating switches are designed for mounting from the side or from the top.
To ensure a correct switching the cable must be fixed at the required height using a stuffing gland, for example, in the case of mounting from the side or using a fixing weight, for example, in case of mounting from the top.
These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).
Please note the following:
The floating switch SSP $1 / \mathrm{K} / \ldots$ or SSP/S $1 / \mathrm{K} / \ldots$ is equipped with a gold-plated crosspoint contact. One of the characteristic properties of gold-plated contacts is that they can reliably switch the smallest voltages and smallest currents, even after extremely long standstill times.
These gold-plated contacts have the following unfavourable properties:

- The gold layer may become burnt off even after just one-off overload. If this happens, the contact loses its ability to reliably switch the smallest voltages and smallest currents.
- Extremely frequent switching actions can also impair or destroy the gold layer, leading to the same effects as outlined above.
If you need to choose between an SSP $1 / K / \ldots$ or $\operatorname{SSP} / \mathrm{S} 1 / \mathrm{K} / \ldots$ with gold-plated contact and an SSP $3 / \mathrm{K} / \ldots$ or SSP/S3/K/... with AgNi contact for an AC/DC 24 V application, your choice should be based on the following criteria:
- Floating switch is seldom in operation but should continue to work reliably even after years: SSP 1/K/... or SSP/S1/K/... .
- Floating switch is frequently in operation, is permanently in action: SSP $3 / \mathrm{K} / \ldots$.. or SSP/S3/K/... .

Technical data	SSP 3/K/... / SSP/S3/K/...	SSP 1/K/... / SSP/S1/K/...
Application	standard application	light current application
Switching voltage	between	between
Switching current	DC 24 V and AC/DC 250 between	AC/DC 1 V and AC/DC 42 between
	AC 20 mA and AC 3 (1) A	AC 0.1 mA and AC 100 (50) mA
	or between DC 20 mA and DC 100 mA max. 350 VA	or between DC 0.1 mA and DC 10 mA

Operating principle Options for safety appl. Recommended appl. Float material
Seal material
Float protection class
Temperature appl. range Max. immersion depth of the float
Connecting cables Application range of the connecting cables

Connecting cable length

Optional extras

ball-operated microswitch, potential-free changeover contact

—— $\quad |$| see page 1-1-27 |
| :---: | via Jola protection relay KR ..

FPM; on request: EPDM
IP 68
see chart on page 1-1-13
max. 10 metres head of water at $+20^{\circ} \mathrm{C}$ see chart on page 1-1-13

- black PVC cable: water, used water, slightly aggressive liquids, oils without aromatic additives, fuel oil and diesel fuel with a specific gravity $\geq 0.82 \mathrm{~g} / \mathrm{cm}^{3}$
- grey A05RN-F cable:
water, used water, slightly aggressive liquids with a specific gravity $\geq 0.82 \mathrm{~g} / \mathrm{cm}^{3}$ - red-brown silicone cable: water and certain other liquids with a specific gravity $\geq 0.82 \mathrm{~g} / \mathrm{cm}^{3}$, with low mechanical strength
- green halogen-free PUR cable: water, used water, slightly aggressive liquids and some oils without aromatic additives with a specific gravity $\geq 0.82 \mathrm{~g} / \mathrm{cm}^{3}$
- black CM cable:
water and certain acids and lyes with a specific gravity $\geq 1 \mathrm{~g} / \mathrm{cm}^{3}$
1 metre, other cable lengths on request.
When ordering, please always state the desired cable type and cable length.
stuffing glands and fixing weights made of brass, stainless steel 316 Ti or PP

Optional extras:

Floating switch mounting only possible from the inside:

- stuffing gland $\mathrm{G}^{3} / 8$, brass
- stuffing gland $\mathrm{G}^{1} / 2$, brass
- stuffing gland $\mathrm{G}^{1} / 2$, stainless steel 316 Ti
- stuffing gland $\mathrm{G}^{1 / 2}$, PP

Floating switch mounting possible from the outside:

- stuffing gland G1, brass
- stuffing gland G1, stainless steel 316 Ti
- stuffing gland G1, PP

Stuffing gland G1

Optional extras: fixing weight for SSP...

stainless steel 316 Ti or brass

○la SPH... floating switches

These floating switches are designed for mounting from the side or from the top.
To ensure a correct switching the cable must be fixed at the required height using a stuffing gland, for example, in the case of mounting from the side or using a fixing weight, for example, in case of mounting from the top.
These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).
Please note the following:
The floating switch SPH $1 / \mathrm{K} / \ldots$ or $\mathrm{SPH} / \mathrm{S} 1 / \mathrm{K} / \ldots$ is equipped with a gold-plated crosspoint contact. One of the characteristic properties of gold-plated contacts is that they can reliably switch the smallest voltages and smallest currents, even after extremely long standstill times.
These gold-plated contacts have the following unfavourable properties:

- The gold layer may become burnt off even after just one-off overload. If this happens, the contact loses its ability to reliably switch the smallest voltages and smallest currents.
- Extremely frequent switching actions can also impair or destroy the gold layer, leading to the same effects as outlined above.
If you need to choose between an SPH $1 / \mathrm{K} / \ldots$ or SPH/S1/K/... with gold-plated contact and an SPH 3/K/... or SPH/S3/K/... with AgNi contact for an AC/DC 24 V application, your choice should be based on the following criteria:
- Floating switch is seldom in operation but should continue to work reliably even after years: SPH 1/K/... or SPH/S1/K/... .
- Floating switch is frequently in operation, is permanently in action: SPH 3/K/... or SPH/S3/K/... .

Technical data	SPH 3/K/... I SPH/S3/K/...	SPH 1/K/... / SPH/S1/K/...
Application	standard application	light current application
Switching voltage	between	between
Switching current	DC 24 V and AC/DC 250 between	C 1 V and $\mathrm{AC} / \mathrm{DC} 42 \mathrm{~V}$ between
	AC 20 mA and AC 3 (1) A	AC 0.1 mA and AC 100 (50) mA
	or between DC 20 mA and DC 100 mA	or between DC 0.1 mA and DC 10 mA

Operating principle Options for safety appl.
Recommended appl.
Float material
Seal material
Float protection class
Temperature appl. range Max. immersion depth of the float
Connecting cables Application range of the connecting cables

Connecting cable length

Optional extras

ball-operated microswitch, potential-free changeover contact
—— $\left.\quad\right|_{\text {PP }}$ via Jola protection relay KR ..

FPM; on request: EPDM
IP 68
see chart on page 1-1-13
max. 10 metres head of water at $+20^{\circ} \mathrm{C}$ see chart on page 1-1-13

- black PVC cable: water, used water, slightly aggressive liquids, oils without aromatic additives, fuel oil and diesel fuel with a specific gravity $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}$
- grey A05RN-F cable: water, used water, slightly aggressive liquids with a specific gravity $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}$
- red-brown silicone cable: water and certain other liquids
with a specific gravity $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}$, with low mechanical strength - green halogen-free PUR cable: water, used water, slightly aggressive liquids and some oils without aromatic additives with a specific gravity $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}$
- black CM cable:
water and certain acids and lyes with a specific gravity $\geq 0.8 \mathrm{~g} / \mathrm{cm}^{3}$
- white PTFE cable: suitable for all liquids in which the float material PP and the seal material FPM or EPDM are also resistant with a specific gravity $\geq 0.8 \mathrm{~g} / \mathrm{cm}^{3}$
1 metre, other cable lengths on request. When ordering, please
always state the desired cable type and cable length.
stuffing glands and fixing weights made of brass,
stainless steel 316 Ti or PP

Switching action in liquids with a specific gravity of $1 \mathrm{~g} / \mathrm{cm}^{3}$

Contact switches over at

1) approx. 60 mm
but approx. 100 mm for the CM cable and PTFE cable

Fixing weight made of

Fixing weight made of PP

SW 19

○ใ@ SSX... floating switches

These floating switches are designed for mounting from the side or from the top.
To ensure a correct switching the cable must be fixed at the required height using a stuffing gland, for example, in the case of mounting from the side or using a fixing weight, for example, in case of mounting from the top.
These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).
Please note the following:
The floating switch SSX $1 / \mathrm{K} / \ldots$ or $\operatorname{SSX} / \mathrm{S} 1 / \mathrm{K} / \ldots$ is equipped with a gold-plated crosspoint contact. One of the characteristic properties of gold-plated contacts is that they can reliably switch the smallest voltages and smallest currents, even after extremely long standstill times.
These gold-plated contacts have the following unfavourable properties:

- The gold layer may become burnt off even after just one-off overload. If this happens, the contact loses its ability to reliably switch the smallest voltages and smallest currents.
- Extremely frequent switching actions can also impair or destroy the gold layer, leading to the same effects as outlined above.
If you need to choose between an SSX $1 / K / \ldots$ or $\operatorname{SSX} / \mathrm{S} 1 / \mathrm{K} / \ldots$ with gold-plated contact and an SSX 3/K/... or SSX/S3/K/... with AgNi contact for an AC/DC 24 V application, your choice should be based on the following criteria:
- Floating switch is seldom in operation but should continue to work reliably even after years: SSX 1/K/... or SSX/S1/K/... .
- Floating switch is frequently in operation, is permanently in action: SSX $3 / \mathrm{K} / \ldots$ or $\operatorname{SSX} / \mathrm{S} 3 / \mathrm{K} / \ldots$.

Technical data	SSX 3/K/... I SSX/S3/K/...	SSX 1/K/... / SSX/S1/K/...
Application	standard application	light current application
Switching voltage	between AC/DC 24 V and $A C / D C 250 \mathrm{~V}$	between ACIDC 1 V and $A C / D C 42 \mathrm{~V}$
Switching current	between	between
	AC 20 mA and AC 3 (1) A	AC 0.1 mA and AC 100 (50) mA
Switching capacit	or between DC 20 mA and DC 100 mA max. 350 VA	or between DC 0.1 mA and DC 10 mA max. 4 VA

Operating principle Options for safety appl. Recommended appl. Float material
Seal material
Float protection class
Temperature appl. range Max. immersion depth of the float
Connecting cables Application range of the connecting cables

Connecting cable length

Optional extras

ball-operated microswitch, potential-free changeover contact

—— \quad PP \quad| see page 1-1-27 |
| ---: |

FPM; on request: EPDM
IP 68
see chart on page 1-1-14
max. 10 metres head of water at $+20^{\circ} \mathrm{C}$ see chart on page 1-1-14

- black PVC cable: water, used water, slightly aggressive liquids, oils without aromatic additives, fuel oil and diesel fuel with a specific gravity $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}$
- grey A05RN-F cable: water, used water, slightly aggressive liquids with a specific gravity $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}$

- black CM cable:

water and certain acids and lyes with a specific gravity $\geq 0.8 \mathrm{~g} / \mathrm{cm}^{3}$

- white PTFE cable: suitable for all liquids in which the float material PP and the seal material FPM or EPDM are also resistant, with a specific gravity $\geq 0.8 \mathrm{~g} / \mathrm{cm}^{3}$
2 metres, other cable lengths on request. When ordering, please always state the desired cable type and cable length.
- external fixing weight made of cast steel for liquids with a specific gravity $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}$ (not suitable for the PTFE cable)
- external fixing weight made of stainless steel 316 Ti
for liquids with a specific gravity $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}$
- internal fixing weight (integrated in the float) -
additional reference /IG - for liquids
with a specific gravity between 0.95 and $1.05 \mathrm{~g} / \mathrm{cm}^{3}$

Optional extras

External fixing weight made of cast steel

External fixing weight made of stainless steel 316 Ti

○○la FS... floating switches
 with built-in weight for fixing of switching point

These floating switches are designed for mounting from the top.
They are fitted with a built-in weight for fixing the switching point at the desired height; this renders additional fastening of the switch at the height of the switching point unnecessary. This weight is dimensioned in such a way that the switch tilts around its own axis when the liquid level rises and then follows the rising liquid level (see function diagram on page 1-1-10). This tilting action of the float activates the switching process.

These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Please note the following:

The floating switch FS $1 / \mathrm{K} / \ldots$ or $\mathrm{FS} / \mathrm{S} 1 / \mathrm{K} / \ldots$ is equipped with a gold-plated crosspoint contact. One of the characteristic properties of gold-plated contacts is that they can reliably switch the smallest voltages and smallest currents, even after extremely long standstill times.
These gold-plated contacts have the following unfavourable properties:

- The gold layer may become burnt off even after just one-off overload. If this happens, the contact loses its ability to reliably switch the smallest voltages and smallest currents.
- Extremely frequent switching actions can also impair or destroy the gold layer, leading to the same effects as outlined above.
If you need to choose between an FS $1 / \mathrm{K} / \ldots$ or $\mathrm{FS} / \mathrm{S} 1 / \mathrm{K} / \ldots$ with gold-plated contact and an FS $3 / \mathrm{K} / \ldots$ or $\mathrm{FS} / \mathrm{S} 3 / \mathrm{K} / \ldots$ with AgNi contact for an AC/DC 24 V application, your choice should be based on the following criteria:
- Floating switch is seldom in operation but should continue to work reliably even after years: FS $1 / K / \ldots$ or $\mathrm{FS} / \mathrm{S} 1 / \mathrm{K} / \ldots$.
- Floating switch is frequently in operation, is permanently in action: FS $3 / \mathrm{K} / \ldots$ or $\mathrm{FS} / \mathrm{S} 3 / \mathrm{K} / \ldots$.

Technical data	FS 3/K/... \| FS/S3/K/...	FS 1/K/... I FS/S1/K/.
Application Switching voltage Switching current Switching capacity	standard application between AC/DC 24 V and AC/DC 250 V between AC 20 mA and AC 3 (1) A or between DC 20 mA and DC 100 mA max. 350 VA	light current application between AC/DC 1 V and $A C / D C 42 \mathrm{~V}$ between AC 0.1 mA and AC 100 (50) mA or between DC 0.1 mA and DC 10 mA max. 4 VA
Operating principle	ball-operated microswitch, potential-free changeover contact	
Options for safety appl.		see page 1-1-27
Recommended appl.		via Jola protection relay KR
Float material	PP	
Seal material	FPM; on request: EPDM	
Float protection class	IP 68	
Temperature appl. range	see chart on page 1-1-14	
Max. immersion depth of the float Application range	max. 10 metres head of water at $+20^{\circ} \mathrm{C}$ in liquids with a specific gravity between 0.95 and $1.05 \mathrm{~g} / \mathrm{cm}^{3}$	
Connecting cables	see chart on page 1-1-14	
Application range of the connecting cables	- black P water, used water and - grey A05 water, used water and - red-brown water and certain other liquid - green haloge water, used water and - black water and certa	C cable: ghtly aggressive liquids N-F cable: ightly aggressive liquids icone cable: with low mechanical strength free PUR cable ghtly aggressive liquids M cable: acids and lyes
Connecting cable length	When ordering, please always state the desired cable type and cable length.	

FS 3/K/PVC floating switch
(idealized representation)

Function diagram of the FS... (idealized representation)

* depends on the cable used and

Switching action in liquids with a specific gravity of $1 \mathrm{~g} / \mathrm{cm}^{3}$

Contact switches over at

○○@ SSR... floating switches

These floating switches are designed for mounting from the side.
To ensure a correct switching the $\mathrm{G}^{1} / 2$ screw-in nipple must be screwed in a horizontal $\mathrm{G} 1 / 2$ sleeve.

These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Please note the following:
The floating switch SSR $1 / K / \ldots$ or SSR/S1/K/... is equipped with a gold-plated crosspoint contact. One of the characteristic properties of gold-plated contacts is that they can reliably switch the smallest voltages and smallest currents, even after extremely long standstill times.
These gold-plated contacts have the following unfavourable properties:

- The gold layer may become burnt off even after just one-off overload. If this happens, the contact loses its ability to reliably switch the smallest voltages and smallest currents.
- Extremely frequent switching actions can also impair or destroy the gold layer, leading to the same effects as outlined above.
If you need to choose between an SSR $1 / K / \ldots$ or SSR/S1/K/... with gold-plated contact and an SSR $3 / K / \ldots$ or SSR/S3/K/... with AgNi contact for an AC/DC 24 V application, your choice should be based on the following criteria:
- Floating switch is seldom in operation but should continue to work reliably even after years: SSR $1 / K / \ldots$ or SSR/S1/K/... .
- Floating switch is frequently in operation, is permanently in action: SSR $3 / \mathrm{K} / \ldots$ or SSR/S3/K/..

Technical data	SSR 3/K/... SSR/S3/K/...	SSR 1/K/... SSR/S1/K/...
Application	standard application	light current application
Switching voltage	between	between
	AC/DC 24 V and AC/DC 250 V	AC/DC 1 V and AC/DC 42 V
Switching current	between	AC 0.1 mA and AC 100 (50) mA
	AC 20 mA and AC 3 (1) A or between	AC 0.1 mA and AC 100 (50) mA or between
	DC 20 mA and DC 100 mA	DC 0.1 mA and DC 10 mA
Switching capacity	max. 350 VA	max. 4 VA

Operating principle
Options for safety appl.
Recommended appl.
Float material
Seal material
Appliance protection class

Temperature appl. range
Max. immersion depth
of the float
Connecting cables
Application range of
the connecting cables

Connecting cable length
ball-operated microswitch, potential-free changeover contact see page 1-1-27 via Jola protection relay KR .. stainless steel 316 Ti

PTFE
in installed condition inside the tank: IP 68, on the stuffing gland screw fitting outside the tank: IP 54 see chart on page 1-1-14
max. 30 metres head of water at $+20^{\circ} \mathrm{C}$ see chart on page 1-1-14

[^0]Optional extra

SSR 3/K/RN

Switching action in liquids with a specific gravity of $1 \mathrm{~g} / \mathrm{cm}^{3}-$ Diagram of SSR... with stainless steel stirrup (optional)

| Types | Application | Cable | Temperature
 application
 range | VDE
 mark | EMC
 certifi-
 cate |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

List of the available SSP... floating switches

SSP 3/K/PVC	Application up to max. 250 V	PVC, black, 3×0.75	$\begin{gathered} +8^{\circ} \mathrm{C} \\ \text { to } \\ +60^{\circ} \end{gathered}$	X	X
SSP 1/K/PVC	Light current application				X
SSP 3/K/RN	Application up to max. 250 V	A05RN-F, grey, 3×0.75	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ +60^{\circ} \mathrm{C} \end{gathered}$	X	X
SSP 1/K/RN	Light current application				X
SSP/S3/K/SIL	Application up to max. 250 V	silicone, red-brown, 3×0.75	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		X
SSP/S1/K/SIL	Light current application				X
SSP/S3/K/PUR	Application up to max. 250 V	PUR, green, halogenfree, 3×0.5	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		X
SSP/S1/K/PUR	Light current application				X
SSP/S3/K/CM	Application up to max. 250 V	$\begin{gathered} \hline \text { CM, } \\ \text { black, } \\ 3 \times 0.75 \end{gathered}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		X
SSP/S1/K/CM	Light current application				X

List of the available SPH... floating switches

SPH 3/K/PVC	Application up to max. 250 V	$\begin{array}{c}\text { PVC, } \\ \text { black, }\end{array}$	$\begin{array}{c}+8^{\circ} \mathrm{C} \\ \text { to } \\ +60^{\circ} \mathrm{C}\end{array}$		
3×0.75					

Types	Application	Cable	Temperature application range	VDE mark	EMC certificate $((G))$ EMV
List of the available SSX... floating switches					
SSX 3/K/PVC	Application up to max. 250 V	PVC, black, 3×0.75	$\begin{gathered} +8^{\circ} \mathrm{C} \\ \text { to } \\ +60^{\circ} \mathrm{C} \end{gathered}$	X	X
SSX 1/K/PVC	Light current application				X
SSX 3/K/RN	Application up to max. 250 V	$\begin{gathered} \text { A05RN-F, } \\ \text { grey, } \\ 3 \times 0.75 \end{gathered}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ +60^{\circ} \mathrm{C} \end{gathered}$	X	X
SSX 1/K/RN	Light current application				X
SSX/S3/K/CM	Application up to max. 250 V	$\begin{gathered} \text { CM, } \\ \text { black, } \\ 3 \times 0.75 \end{gathered}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		X
SSX/S1/K/CM	Light current application				X
SSX/S3/K/PTFE	Application up to max. 250 V	PTFE, white, 3×0.75	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		X
SSX/S1/K/PTFE	Light current application				X
List of the available FS... floating switches					
FS 3/K/PVC	Application up to max. 250 V	$\begin{aligned} & \text { PVC, } \\ & \text { black, } \\ & 3 \times 0.75 \end{aligned}$	$\begin{gathered} +8^{\circ} \mathrm{C} \\ \text { to } \\ +60^{\circ} \mathrm{C} \end{gathered}$	X	X
FS 1/K/PVC	Light current application				X
FS 3/K/RN	Application up to max. 250 V	$\begin{gathered} \text { A05RN-F, } \\ \text { grey, } \\ 3 \times 0.75 \end{gathered}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ +60^{\circ} \mathrm{C} \end{gathered}$	X	X
FS 1/K/RN	Light current application				X
FS/S3/K/SIL	Application up to max. 250 V	silicone, red-brown,3×0.75	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		X
FS/S1/K/SIL	Light current application				X
FS/S3/K/PUR	Application up to max. 250 V	PUR, green, halogenfree, 3×0.5	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		X
FS/S1/K/PUR	Light current application				X
FS/S3/K/CM	Application up to max. 250 V	$\begin{gathered} \text { CM, } \\ \text { black, } \\ 3 \times 0.75 \end{gathered}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		X
FS/S1/K/CM	Light current application				X
List of the available SSR... floating switches					
SSR 3/K/RN	Application up to max. 250 V	A05RN-F, black, 4 G 0.75	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ +70^{\circ} \mathrm{C} \end{gathered}$	X	X
SSR 1/K/RN	Light current application				X
SSR/S3/K/SIL	Application up to max. 250 V	silicone, red-brown,$4 \text { G } 0.75$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		X
SSR/S1/K/SIL	Light current application				X

○○い SS/PTFE 55/A ./K floating switches

These floating switches are designed for mounting from the top.
To ensure a correct switching the cable must be fixed at the required height using for example a fixing weight or a mounting pipe.
These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Please note the following:

The floating switch SS/PTFE 55/A $1 / \mathrm{K}$ is equipped with a gold-plated crosspoint contact. One of the characteristic properties of gold-plated contacts is that they can reliably switch the smallest voltages and smallest currents, even after extremely long standstill times.
These gold-plated contacts have the following unfavourable properties:

- The gold layer may become burnt off even after just one-off overload. If this happens, the contact loses its ability to reliably switch the smallest voltages and smallest currents.
- Extremely frequent switching actions can also impair or destroy the gold layer, leading to the same effects as outlined above.
If you need to choose between an SS/PTFE 55/A $1 / \mathrm{K}$ with gold-plated contact and an SS/PTFE 55/A 3/K with AgNi contact for an AC/DC 24 V application, your choice should be based on the following criteria:
- Floating switch is seldom in operation but should continue to work reliably even after years: SS/PTFE 55/A 1/K.
- Floating switch is frequently in operation, is permanently in action: SS/PTFE 55/A 3/K.

T	SS/PTFE 55/A 3/K	SS/PTFE 55/A 1/K
Application Switching voltage Switching current Switching capacity	standard application between AC/DC 24 V and $\mathrm{AC} / D C 250 \mathrm{~V}$ between AC 20 mA and AC 3 (1) A or between DC 20 mA and DC 100 mA max. 350 VA	light current application between AC/DC 1 V and $\mathrm{AC} / \mathrm{DC} 42 \mathrm{~V}$ between AC 0.1 mA and AC 100 (50) mA or between DC 0.1 mA and DC 10 mA max. 4 VA
Operating principle	ball-operated microswitch, potential-free changeover contact	
Options for safety appl.		see page 1-1-27
Recommended appl.	-	via Jola protection relay KR
Float material Seal material Float protection class Temperature appl. range Max. immersion depth of the float Application range	max. 3 metres head in liquids with a specirir	$\begin{aligned} & \text { FE } \\ & \text { M } \\ & 68 \\ & +85^{\circ} \mathrm{C} \\ & \text { of water at }+20^{\circ} \mathrm{C} \end{aligned}$
Connecting cable Connecting cable length	2 metres, other cable lengths on request. When ordering, please always state the desired cable length.	
Optional extra	fixing weight made of PTFE	

SS/PTFE 55/A ./K

Switching action in liquids with a specific gravity of $1 \mathrm{~g} / \mathrm{cm}^{3}$

Contact switches over at

Fola SS/PTFE 55/./K floating switches

These floating switches are designed for mounting from the side.
To ensure a correct switching the $\mathrm{G} 1 / 2$ (G2) screw-in nipple must be screwed in a horizontal G1⁄2 (G2) sleeve.
These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Please note the following:

The floating switch SS/PTFE 55/1/K is equipped with a gold-plated crosspoint contact. One of the characteristic properties of gold-plated contacts is that they can reliably switch the smallest voltages and smallest currents, even after extremely long standstill times.
These gold-plated contacts have the following unfavourable properties:

- The gold layer may become burnt off even after just one-off overload. If this happens, the contact loses its ability to reliably switch the smallest voltages and smallest currents.
- Extremely frequent switching actions can also impair or destroy the gold layer, leading to the same effects as outlined above.
If you need to choose between an SS/PTFE 55/1/K with gold-plated contact and an SS/PTFE 55/3/K with AgNi contact for an AC/DC 24 V application, your choice should be based on the following criteria:
- Floating switch is seldom in operation but should continue to work reliably even after years: SS/PTFE 55/1/K.
- Floating switch is frequently in operation, is permanently in action: SS/PTFE 55/3/K.

Switching action in liquids with a specific gravity of $1 \mathrm{~g} / \mathrm{cm}^{3}$

Contact switches over at

Further mounting accessories

Mounting bracket made of stainless steel 316 Ti for G1 stuffing gland (fixing of the G1 stuffing gland via G1 counternut)

MW 100x100x60/G1/B
MW 100x100x60/G1/L

Mounting bracket with 4 cable entries made of nickel-plated brass (on request made of PP or stainless steel) suitable for 4 floating switches

MW 190x430x40/4xM16-Ms

Further mounting brackets see page 16-1-0 ff.
 TSV/... level monitors with mounted floating switch SSP...

Probe tube in terminal box / screw-in nipple adjustable

These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Technical data	TSV/PP/SSP ./K/...	TSV/E/SSP ./K/...
Probe tube material	PP	stainless steel 316 Ti Probe tube diameter
Probe tube length	apm	
Screw-in nipple	PP, G1 500 mm , longer on request	

. = to be specified: 3 or 1 (for type SSP $3 / K / \ldots$ or SSP $1 / K / .$.); see page 1-1-3
$\ldots=$ to be specified according to the list of types on page 1-1-13

TS/O/... immersion probes
with mounted floating switches SSP...

These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Functional description based on a switching example:

Automatic filling of a tank

The bottom floating switch falls together with the liquid to a minimum level and acts on the contactor coil winding when it falls below the horizontal. Liquid is then pumped into the tank. When the maximum level is reached, the top floating switch rises above the horizontal, the contactor holding circuit is interrupted, and the filling process is stopped.

Technical data	TS/O/...
Probe tube material Probe tube diameter Probe tube length	PP depends on the type and number of switches according to customer's specifications
Screw-in nipple (on request)	PP; flange on request
Terminal box	PP, A 307, $120 \times 80 \times 55 \mathrm{~mm}$, protection class IP 65, for max. 12 terminals; for more than 12 terminals: polyester, A 113, $160 \times 160 \times 90 \mathrm{~mm}$, protection class IP 65
Mounting orientation Temperature appl. range Pressure resistance	vertical from $0^{\circ} \mathrm{C}$ or $+8^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ or $+85^{\circ} \mathrm{C}$ (depends on the type of cable used, see page 1-1-13) for pressureless applications only
Mounted floating switches Electrical data	SSP... (please always state when ordering) see technical data on pages 1-1-3 ff.

Type designation	No. of mounted floating switches	Type of mounted floating switches	Probe tube diameter	Screw-in nipple (on request)
TS/O/1 x SSP...	1		16 mm	G1 $11 / 2$ or G2
TS/O/2 x SSP•••	2	SSP•••	20 mm	G2
TS/O/3 x SSP•••	3	(please	25 mm	G2
TS/O/4 x SSP•••	4	always state	25 mm	G2
TS/O/5 x SSP•••	5	when ordering)	25 mm	G2

... = to be specified, see chart on page 1-1-13
On request: - with more than 5 mounted floating switches
The above equipment will be manufactured in accordance with customer's specifications.

For enquiries or orders, please complete the questionnaire on page 1-1-25 or 1-1-26 (as applicable).

TS/... immersion probes
with mounted floating switches SSX..., SSR... or SS/PTFE 55/./K

These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Mode of operation:
see example on page 1-1-22.

TS/E/1 x SSR ... with stainless steel stirrup to limit float movement and with cable in place of terminal box

Technical data	TS/PP/...	TS/G/...	TS/E/...		TS/PTFE/...
Probe tube material Probe tube dia. Probe tube length	see chart on page 1-1-24 according to customer's specifications				
Option: flange	on request, but making allowance for the installation dimensions of the mounted floating switches				
Terminal box	PP, A 307, $120 \times 80 \times 55 \mathrm{~mm}$, protection class IP 65, for max. 9 terminals for more or cast al on	cast alu prot for max han 9 or 12 inium, A 1 protect quest: with	A 119, mm, ass minals ls: polyes 160 x 1 IP 65; nnecting	12 pr A $\times 9$ le	PP, A 307, $20 \times 80 \times 55 \mathrm{~mm}$ rotection class IP 65, for max. 9 terminals 113, 0 mm ,
Mounting orientation					
Temperature application range Pressure resistance	$1-1-14$	on the ty 1-1-14 pressure	le used, 1-1-14 ications		ge $1-1-17$
Mounted floating switches Electrical data	SSX.•• 1-1-7	SSX... see techn 1-1-7	SSR.•• on page 1-1-11		S/PTFE 55/./K 1-1-17

Suitable for types on pages 1-1-23 and 1-1-24:
$\bullet . .=$ to be specified according to the list of types on page 1-1-14

- = to be specified: 3 or 1 (for type ... $3 / \mathrm{K}$ or ... $1 / \mathrm{K}$); see page 1-1-17

On request TS/PTFE/... with screw-in nipple G2 for mounting from inside the container (the terminal box has to be removed prior to mounting and then fixed back in place).
The above equipment will be manufactured in accordance with customer's specifications.

For enquiries or orders, please complete the questionnaire on page 1-1-25 or 1-1-26 (as applicable).

Type designation	No of mounted floating switches	Type of mounted floating switches	Probe tube diameter
$\begin{aligned} & \text { TS/PP/1 x SSX } \bullet \bullet \bullet \\ & \text { TS/PP/2 } \times \text { SSX } \\ & \text { TS/PP/3 } \times \text { SSX } \\ & \text { TS/PP/4 } \times \text { SSX } \\ & \text { TS/PP/5 } \times \text { SSX } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	SSX... (please always state when ordering)	32 mm
TS/G/1 x SSX••• TS/G/2 x SSX••• TS/G/3 x SSX••• TS/G/4 x SSX••• TS/G/5 x SSX•••	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	SSX.... (please always state when ordering)	28 mm 28 mm 34 mm 34 mm 34 mm
$\begin{aligned} & \text { TS/E/1 x SSR••• } \\ & \text { TS/E/2 } \times \text { SSR••• } \\ & \text { TS/E/3 } \times \text { SSR••• } \\ & \text { TS/E/4 } \text { TSSR•• SSR } \\ & \text { TS/E SSR••• } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	SSR... with stirrup (please always state when ordering)	28 mm 28 mm 34 mm 34 mm 34 mm
TS/PTFE/1 x SS/PTFE 55/॰/K TS/PTFE/2 x SS/PTFE 55/o/K TS/PTFE/3 x SS/PTFE 55/॰/K TS/PTFE/4 x SS/PTFE 55/॰/K TS/PTFE/5 x SS/PTFE 55/॰/K	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	SS/PTFE 55/•/K (please always state when ordering)	27 mm

On request also with more than 5 mounted floating switches.

Design examples
TS/E/4 x SSR... with stirrups

TS/PTFE/2 x SS/PTFE 55/./K with mounting flange

Desired switching functions

(indication max., min., pump or valve
ON - OFF, filling or emptying, \qquad
dry-run or overflow protection):
\qquad
Tank dimensions and installation \qquad
conditions (sketch if applicable):
Type of liquid: \qquad Specific gravity: \qquad
Viscosity: \qquad Temperature: \qquad Operating pressure: \qquad
Desired immersion probe type: TS/

When planning the design of the immersion probes, please consider that when the liquid level rises, the contact of the floating switches is not activated when the floating switches reach the horizontal position, but is activated as depicted in the diagrams of the various floating switches on pages 1-1-3 and following.
When the liquid level sinks, the contact of the floating switches is activated shortly below their horizontal position.

	Desired floating switch type	Distance from sealing surface of screw-in nipple or flange in mm	Switching function (e.g. high alarm, pump ON, pump OFF etc.)	Working direction of the floating switch:
rising $=$ falling $=\downarrow$				
1				
2				
3				
4				
5				
6				

Desired options:

Desired switching functions
(indication max., min., pump or valve
ON - OFF, filling or emptying,
dry-run or overflow protection):
Tank dimensions and installation \qquad
conditions (sketch if applicable):
Type of liquid: \qquad Specific gravity: \qquad
Viscosity: \qquad Temperature: \qquad Operating pressure: \qquad
Desired immersion probe type: TS/...

When planning the design of the immersion probes, please consider that when the liquid level rises, the contact of the floating switches is not activated when the floating switches reach the horizontal position, but is activated as depicted in the diagrams of the various floating switches on pages 1-1-3 and following.
When the liquid level sinks, the contact of the floating switches is activated shortly below their horizontal position.

	Desired floating switch type	Distance from end of probe tube in mm	Switching function (e.g. high alarm, pump ON, pump OFF etc.)	Working direction of the floating switch:
rising falling $=\downarrow$				
1				
2				
3				
4				
5				
6				

Desired options:

Variant 1:

Two (2) diodes of the type 1N4004 or equivalent

Variant 2:

Two (2) metal film resistors or carbon film resistors R 1, R 2 , each greater than or equal to $2 \mathrm{k} \Omega$, each P greater than or equal to $1 / 4 \mathrm{~W}$
and
one (1) metal film resistor or carbon film resistor R 3 greater than or equal to 330Ω, P greater than or equal to 1 W

[^0]: - black A05RN-F cable - red-brown silicone cable

 The selected connecting cable is routed through a protective bellows made of stainless steel 316 Ti to which a $\mathbf{G} 1 / 2$ screw-in nipple is fastened.
 The selected connecting cable under the protective bellows is suitable for all liquids in which the stainless steel bellows is resistant, with a specific gravity $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}$
 2 metres from screw-in nipple, other cable lengths on request.
 When ordering, please always state the desired cable type and cable length.
 stainless steel stirrup to limit the movement of the float

