M700

Product Description

The Forta M700 is a spring return electromechanical actuator for the control of two-way and three-way plug valves in:

- domestic hot water systems
- heating systems
- air handling systems

The Forta M700 is either controlled by an increase/decrease signal or by a modulating $0-10 \mathrm{~V}$ control signal. Modulating control allows for faster positioning of the actuator.

The electronic circuitry of the actuator ensures that the running time is the same, regardless of the stroke of the valve in question.

These actuators are easy to mount and connect. They can be mounted directly onto 20 mm stroke Venta control valves, without any mounting kit.

For Satchwell valves, a linkage is included (see Available Products, next page).
The working range of the actuator is adjusted automatically depending on the stroke of the valve. The electronic circuitry of the actuator then takes care of the adjustment of the valve end positions.
The actuator requires 24 VAC supply voltage to operate. It can provide 16 VDC voltage supply for older TAC controllers.

Available Products

Part Number	Designation	Description
$880-0430-030$	M700-SRSU	modulating control signal or increase/decrease signal, "Stem Up" spring action (the stem is pulled up when power off)
$880-0431-000$	M700-S2-SRSU	modulating control signal or increase/decrease signal, "Stem Up" spring action (the stem is pulled up when power off) and end point switches
$880-0440-000$	M700-SRSD "Stal\|	modulating control signal or increase/decrease signal, "StemDown"spring action (the stem is pushed down when power off)
$880-0441-000$	M700-S2-SRSD	modulating contro Isignal o rincrease/decrease signal, "Stem Down"spring action (the stem is pushed down when power off) and end point switches
$880-0630-000$	M700-SRSU+L7SV	modulating control signal or increase/decrease signal, "Stem Up"spring action (the stem is pulled up when power off), including a linkage for Satchwell valves
$880-0631-000$	M700-S2-SRSU+L7SV	modulating control signal or increase/decrease signal, "Stem Up" spring action (the stem is pulled up when power off) and end point switches, including a linkage for Satchwell valves
$880-0641-000$	M700-SRSD+L7SV	modulating control signal or increase/decrease signal, "Stem Down" spring action (the stem is pushed down when power off), including a linkage for Satchwell valves
$880-0641-000$	M700-S2-SRSD+L7SV	modulating control signal or increase/decrease signal, "Stem Down" spring action (the stem is pushed down when power off), and end point switches, including a linkage for Satchwell valves

Specifications

Supply voltage

24 VAC +25\%/ -30\%, 50-60 Hz
Power consumption
Average 30 VA
Transformer sizing
50 VA
Stroke
9-52 mm

Factory set stroke

20 mm
Thrust
700 N
Duty cycle
max. 20\%/60 min.
Running time - motor
Modulating $\mathbf{1 0 - 2 5 ~ m m}$
15 sec
Modulating 25-32 mm
20 sec
Modulating 32-52 mm
30 sec
Increase/decrease
$300 \mathrm{sec} / 600 \mathrm{sec}$
Running time - spring return

20 mm stroke

Less than 35 seconds

45 mm stroke

Less than 65 seconds

Analog input

Input Voltage Range
 $0-10$ VDC

Selectable Ranges

$0-10 \mathrm{~V}, 2-10 \mathrm{~V}, 0-5 \mathrm{~V}, 5-10 \mathrm{~V}$,
2-6V, 6-10V

Impedance

$\min .100 \mathrm{k} \Omega$
Digital inputs VH-VC
Voltage across open input
24 VAC
Current through closed input
5 mA
Pulse time
min. 20 msec
Output G1
Voltage
16 VDC +/- 0.3 V
Load
25 mA , short circuit proof
Output Y (position feedback)

Voltage

2-10 V (0-100\%)
Load
2 mA
Ambient conditions
Operation temperature
-10 to $+50^{\circ} \mathrm{C}$
Storage temperature
-10 to $+50^{\circ} \mathrm{C}$

Humidity

max. 90\% RH
Sound power level
max. 50 dBA
Standards

Emission

EN 50081-1:1992
Immunity
EN 50082-1:1992

Heat

IEC-68-2-2
Humidity
IEC-68-2-3

Cold

IEC-68-2-1
Vibration
IEC-68-2-6
Enclosure rating
IP54

Materia

Housing

Aluminum

Cover

ABS plastic
Physical

Color

Black/grey
Weight
1.8 kg (3.96 lb)

Dimensions (mm)

Fig 1

Function

The actuator

The brushless DC-motor of the actuator turns a screw via a gear wheel. The motor receives a control signal from a controller. The screw gets a linear movement which moves the stem of the valve.
In case of power loss, the spring will bring the actuator totally up ("SRSU" models) or totally down ("SRSD" models)

Control signal

The Forta M700 can either be controlled by an increase/decrease signal or by a variable direct voltage. If an increase/decrease signal is used, the actuator normally moves inwards on an increase signal and outwards on a decrease signal, see Settings.

Manual operation

Due to the safety function implemented, manually operating the actuator is only possible when the power is disconnected. A 10 mm spanner or wrench is required (see figure 2).

Position feedback

Forta M700 actuators are equipped with a 2-10 VDC or 0-5 VDC position feedback signal, where $2 \mathrm{~V}(0 \mathrm{~V})$ always corresponds to the closed position and $10 \mathrm{~V}(5 \mathrm{~V})$ to the open position.

End point switches
When actuators are controlled in sequence, it is possible to use the end point switches that have set positions. They will toggle when the valve is fully open or fully closed, respectively.

Mounting

The actuator may be mounted horizontally, vertically and in any position in between, but not upside down, see figure 3.

Do not use the actuator for the DN15 valves V298, V282, V294, V384, V386 and V394.

To mount the actuator on to a valve, position the actuator over the valve bonnet and connect the U brace through the groove on the valve neck into the mounting holes on the actuator. Secure with the flanged nuts.

Couple the valve stem to the actuator spindle using the stem linkage/extension. It may be necessary to operate the manual override to position the actuator spindle to the stroke limit. Ensure the valve is able to fully stroke and the actuator provides a small spring pre-load against the closing limit of the valve.
Electrical Connections

Block	Function	Description
G	24 VAC	Supply voltage
GO	24 VAC rtn	Supply voltage
X1	Input	Control signals (VH, VC short-circuited to GO)
MX	Input, neutral	Supply for RC feedback signal
VH	Increase	
VC	Decrease	16 VDC
G1	O-100\%	
Y		

When installed with three conductors, where the control signal reference is connected to GO, the motor current of the actuator causes varying voltage loss in the cable and thus in the reference level. Forta, which has a highly sensitive control signal input, detects the varying signal and follows it, making it difficult for the actuator to find a stable position.

This variation may be accepted in simplified installations on the following conditions: the cables between the controller and actuator are shorter than 100 m (328 ft .), the cross-sectional area is larger than $1.5 \mathrm{~mm}^{2}$ (AWG 16) and the cables are only connected to one actuator. Please refer to the figures labelled "Simplified installation" for wiring instructions.

Cable lengths

For cables to G, G0 and G1 use a maximum of $100 \mathrm{~m}(328 \mathrm{ft}$.) with a cross-sectional area of minimum $1.5 \mathrm{~mm}^{2}$ (AWG 16). For other cables, use a maximum of 200 m (656 ft .) with a crosssectional area of min. $0.5 \mathrm{~mm}^{2}$ (AWG 20).

Mounting

Fig 3

Connections

Fig 4

Wiring Examples

Increase/decrease control

Modulating control

Short cable installation (3 wires to the actuator)

Normal installation (5 wires to the actuator)

Normal installation (5 wires to the actuator)

Short cable installation (4 wires to the actuator)

PU unit installation (4 wires to the actuator)

There are nine DIP switches in a row on the circuit board. On delivery ('Factory'), all switches are in the "OFF" position.

1 Feedback signal selection

Select between 2-10 VDC and 0-5 VDC feedback voltage output.

2 Control signal-MOD / INC

Forta can either be controlled by a variable direct voltage, a modulating signal (MOD), or by an increase/decrease signal (INC).

3 Sequence or parallel control- - - - / SEQ

With sequence (or parallel) control (SEQ), two actuators/valves can be controlled with a single control signal

For each of these, choose which part of the voltage range to use, the upper range, $5-10 \mathrm{~V}(6-10 \mathrm{~V})$ or the lower one, $0-5 \mathrm{~V}$ (2-6 V).

Note: If sequence or parallel control is not used, the switch --- / SEQ must be in the OFF position, as the switch MOD / INC is not valid during sequence or parallel control.

4 Voltage range-0-10 / 2-10
Choose the control signal voltage range (either $0-10 \mathrm{~V}$ or 2-10 V)

5 Part of voltage range-0-5, 2-6 / 5-10. 6-10

Under sequence control (switch 3 ON). Choose which part of a voltage range to use, the lower one $0-5 \mathrm{~V}(2-6 \mathrm{~V})$ or the upper one 5-10 V (6-10 V). The voltages within brackets are operational with switch 4 ON.
If switch 7 is in the NORM position, the higher voltage corresponds to 100% flow and the lower one to 0%. The INV position reverses this funcion.

6 Running time-60 s / 300 s
With increase/decrease control, you can choose a running time between 60 sec or 300 sec .

With modulating control, the running time is always $15 \mathrm{sec} /$ $20 \mathrm{sec} / 30 \mathrm{sec}$. depending on the valve stroke.

7 Direction of movement-NORM / INV
When normal direction of movement is used, the screw of the actuator moves inwards as the control voltage decreases or if the actuator gets a decrease signal.

With the switch NORM / INV, the direction of movement can be changed

8 Linearization-NORM / LIN/LG

The motorized valve characteristics can be modified. Use the LIN/LG setting to make the characteristics of an equally modified percentage (EQM) valve almost linear.

On the other hand, with LIN/LG a motorized valve equipped with a linear valve operates with "Quick open characteristics." This means that with a small control signal, the valve is almost completely open.

9 End position adjustment-OP / ADJ

This switch is only used to adjust the end positions when the actuator is commissioned.

Momentarily put the switch in the ON position. The actuator automatically finds the end positions of the valve.

At the end of the adjustment all the other DIP switch settings (1 to 8) are read again.

For All Switches

For the actuator to register new DIP switch settings, turn off the power supply, adjust the switches, and restore power.
(This does not apply to the switch OP/ADJ).

Actuator Installation

Set the switches on the circuit board before installing the actuator. There are no other switches or potentiometers to set or adjust. To make an end position adjustment, move the switch »OP/ADJ« into its ADJ position, turn on the supply voltage, and then move the switch back to its OP position.

When an end position adjustment is made, Forta closes the valve and opens it fully. The adjustment is finished by the actuator closing the valve again; the electronic circuitry then adjusts the stroke and the running time to the valve. The set values are stored in the EEPROM of the actuator so that they remain after a loss of voltage.
When the end position adjustment is complete, the actuator starts to control the valve according to the control signal.

\triangle WARNING

Hot media hazard. Before removing the actuator from the valve or before opening the valve, ensure that the valve control medium is isolated and relieve the pressure. Work should only be carried out by qualified personnel.

Maintenance

The actuator is maintenance-free.

Accessories

S2-Forta (auxiliary switch)	$880-0104-000$
Circuit board, M700-SRSU	$1-001-0678-0$
Circuit board, M700-SRSD	$1-001-0679-0$
Linkage Satchwell valves, L7SV	$880-0126-000$

